

UNCLASSIFIED

AD-A954 963

WATERTOWN ARSENAL LABORATORY

MEMORANDUM REPORT

NO. WAL 710/716

Metallurgical Examination of Twelve 23 Thick Rolled Homogeneous and Sixteen 25 Thick Face Herdened Armor Plates Manufactured

by Carnegie-Illinois Steel Corporation

IC FILE COPY

M. YOFFA Phy. Sci. Aide

E. L. REED Research Metallurgist

This document has been approved for public release and cale; its distribution is unlimited.

DATE 19 January 1945

WATERTOWN ARSENAL WATERTOWN, MASS.

NTIS GRA&I	-
PTIC TAB	
Unannounced	1
Justification	
Бу	-
Distribution/	
Availability Codes	
Avail and/or	
1St Special	
	i
A-\	ĺ
THE WASTER	- '

JNGLASSFIED

WATERTOWN AREENAL LABORATORY

MEMORANDUM REPORT NO. WAL 710/716

Final Report on Problem B_4.54

19 January 1945

Metallurgical Examination of Twelve 21 Thick Rolled Homogeneous

and Sixteen 21" Thick Face Hardened Armor Plates Manufactured

OUD .

by Carnegie-Illinois Steel Corporation

ABSTRACT

A metallurgical examination was conducted on twelve (12) 21 thick rolled homogeneous and sixteen (16) 2 thick rolled face hardened armor plates manufactured by Carnegie-Illinois Steel Corporation on OCO-D Project 1558. The results of this investigation indicate that, in general, the steel soundness of the face hardened plates was inferior to that of the homogeneous plates. In this connection, the face hardened plates had more pronounced directional properties than the homogeneous plates. The average Brinell hardness of the homogeneous plates was 247-262. The average Brinell hardness of the face hardened series was found to be face, 465-690, and core 208-243. The depth of the effective case at Rockwell C 50 varied from .26 1-.40 in from the face of plate (10 plates tested) while in two face hardened plates the case depth was .09 16 in from face of plate. In general, the homogeneous and face hardened plates were properly heat treated resulting in fibrous fractures, good V-notch impact properties and a satisfactory microstructure.

1. As requested by the Ordnance Research Center, Aberdeen, metalluratical examination has been completed on twelve samples of 2½ thick rolled homogeneous armor and sixteen samples of 2½ thick rolled face hardened armor plates manufactured by the Carnegie-Illinois Steel Corporation on OCO-D Project 1558. Due to the fact that the first set of

^{1.} APG 470.5/529 - Wtn 470.5/8399(r) - 24 August 1944

sixteen face hardened sections were cut from the edge of the plates, it was impossible to determine an accurate measurement of depth of case. It was observed that near the edge of the plate the case decreased in thickness to a marked degree. It was, therefore, requested that another set of sixteen face hardened sections be forwarded to this arsenal for accurate case depth measurements and that each section be cut from near the center of the ballistic test plate. In reply to this request only twelve semples were submitted. Sections from plate Nos. 41-3/8, 41-3/4, 41-13/16 and 441 were not available for examination. It was reported that the ballistic properties of the face hardened plates were inferior to those of the homogeneous plates.

- 2. The purpose of this investigation was to conduct an examination of the samples to determine if there was a metallurgical variation among the homogeneous or the face hardened plates that might affect the ballistic results.
 - 3. The plates under investigation are listed as follows:

21" Thick Rolled Homogeneous Plates	21 Thick Face Hardened Plates
114	41 1/16
21 A	41 1/8
21B	41 3/16
21 C	41 1 /4
21D	41 5/16
31A	41 3/8
31B	41 7/16
ЙIA	41 1/ 2
41B	41 9/16
41C -	41 5/8
41D	41 11/16
51B	41 3/4
	41 13/16
	41 7/8
	41 15/16
	1111

The results obtained from tests conducted on the twelve homogeneous plates indicated that five plates had a steel soundness rating of "D" while the remainder had "B" and "C" ratings. With the exception of one sample which showed a trace of crystallinity all samples were properly heat treated. Generally speaking, the face hardened plates had more pronounced directional properties than the homogeneous plates as shown by V-notch impact tests and tensile tests. It was noted that the face hardened plates exhibited various degrees of "woodiness" in the fractures made on sections near the edges of the plates. In one case a "D" rating was observed in a center section of a face hardened plate while the remaining center sections had "B" and "C" ratings. The carburized cases exhibited a fine silky fracture. The homogeneous plates

and the face hardened plates were properly heat treated as shown by the satisfactory V-notch impact properties at -40°F. The homogeneous plates were heat treated to a Brinell hardness range of 247-262. The Brinell hardness of the face hardened plates was as follows, face hardness, 465-690, and core hardness, 208-243. In general the face hardness near the center of the carburized plates was slightly lower than the face hardness near the edge of the plate while the core hardness near the center of these plates was slightly higher than the core hardness near the edge of the plates. In a series of ten face hardened plates the effective case depth to Rockwell C 50 varied from .26" to .20" in from the face of the plate. In two face hardened plates, however, the case depth to Rockwell C 50 was only .09" to .16". Furthermore, the case depth to Rockwell C 40 varied from .58" to .80" in from the face of the plates. The microstructure of the homogeneous plates consisted of tempered martensite. The carburized cases of the face hardened plates were fairly free from pronounced carbide segregations while the cores had a structure similar to that of tempered bainite.

- 5. The metallurgical examination consisted of the following tests:
 - a. Chemical analyses of selected plates.
 - b. Fibre fracture test.
 - c. Fracture test for steel quality.
 - d. Brinell hardness surveys.
 - e. Rockwell C hardness surveys.
 - f. V-notch Charpy impact tests.
 - g. Tensile tests.
 - h. Microscopic examination.
- 6. The results of the metallurgical examinations are as follows:
- a. Chemical Analyses. Chemical analyses of representative samples are given in Table I.
- b. Fibre Fracture Test. Fibre fracture tests were made on properly notched sections and the steels rated with respect to their heat treated condition, the results of which are given in Tables IV and V. All of the face hardened plates fractured in a fibrous manner and all except one of the rolled homogeneous plates were fibrous. The carburized cases were silky.

- c. Fracture Test for Steel Quality. The results of this test indicated that of the rolled homogeneous plates, five had a steel soundness rating of "D" while the remainder were satisfactory. The samples removed from the edge of the face hardened plates exhibited various degrees of woodiness. The central areas of these face hardened plates did not exhibit this woodiness to such a pronounced degree as noted in the edges. One sample, so. 41-5/16 exhibited a "D" fracture in the central area of the plate. The results of the fracture tests are given in Tables IV and V.
- d. Brinell Hardness Surveys. Brinell hardness readings were taken on the surface and cross section of the homogeneous plates. On the face hardened series, Brinell readings were taken on the face and cross sections of the core. All readings were equidistantly spaced throughout the sections tested. The hardness values are listed in Tables II and III. It was noted, in most of the face hardened plates, that in the core hardnesses taken on samples from the edge of the plates the immediate center of the core had a Brinell hardness which was 20-30 points higher than the rest of the section. This may be due to metallic segregation present in the center of the cross section.
- a. Rockwell C Hardness Surveys. Rockwell C surveys were made at .05" intervals across the carburized zone, see Figures 1 and 2. The case depth to Rockwell C 40 varied from .58" to .80" in from the face of the plate. The case depth to Rockwell C 50 which may be termed the effective case varied from .26" to .40" in from the face of the plate. In two face hardened plates, however, the case depth to Rockwell C 50 was only .09" to .15".
- f. V-Notch Charry Impact Tests. The results of the V-notch Charry impact tests made on representative samples taken in longitudinal and transverse directions of the homogeneous and face hardened plates are given in Tables IV and V. The values obtained indicate that the plates were properly heat treated and correlate with the results received in the fibre fracture test. Generally speaking, the face hardened plates had more pronounced directional properties than the homogeneous plates as shown by V-notch impact tests.
- Z. Tensile Tests. Tensile tests made in the longitudinal and transverse directions on samples are given in Table VI. The results of these tests indicate that the face hardened plates exhibited greater directional properties than the homogeneous plates.
- h. Microscopic Examination. The pronounced "woody" condition noted near the edge of some of the face hardened plates was associated with a segregation of aluminu streaks. Face hardened plates which only exhibited a trace of woodiness near the edge contained a series of short fine manganese sulphide inclusions. The central areas of the face hardened plates contained occasional sulphide-silicate nonmetallic inclusions. To marked segregation of nonmetallic inclusions was detected in the series of homogeneous plates, apparently the directional properties noted in the face hardened plates were associated with the elongated nonmetallic inclusions detected in these samples.

The microstructure of the rolled homogeneous plates is typical of tempered martensite. The microstructure of the outer cases of the carburized plates consisted of some excess fine carbides in a martensitic matrix whereas in the inner cases the carbides were of the globular type. This correlates with the silkiness of the carburized cases obtained when fractured. The microstructure of the cores consisted of a uniform distribution of fine carbides in a matrix similar to tempered bainite. Photomicrographs are presented which illustrate typical microstructures of the outer and inner carburized cases and cores of the face hardened plates, see Figures 3 and 4.

M. Yoffa

M. yoffa

Phys. Sci. Aide

E. L. Reed

Research Metallurgist Acting Chief, Armor Sect.

(:

TABLE I Chemical Anglyses

Plate			Thick-		٠.				÷						•	
No	Type	Type of Armor	ness	ပ	Mn	21	S	4	N4	Cr.	Mo	-	ટ	B	11	$\overline{z_r}$
11 A	Rolled !	Rolled Homogeneous	23.4	.29	1.29	.29	.015	110.	.69*	.81	.33	Ltn	.13	Ħ	Ħ	N11
21 A	2		23 m	88	1.32	.27	.015	710.	69.	.80	.33	N11	.13	6000-	H	H11
31 A	E	r.	= 2 2 3 1 3 1 3	.285	1.33	.29	910.	.018	ц.	क्रं	.33	11N	.125	F	Ħ	N11
) Th	2	s	1.60	8.	1.36	.27	.021	.018	69*	₹.	.32	N11	. 12	T	Ħ	N1.1
41-1/16		Face Hardened	CO Tick	.305	.23	.05	.020	.013	3.70	1.75	N11	N11	.055	표	N11	N11
91/1-14	*	£	ू इंदि	.355	.21	.05	.023	600.	3.80	1.76	N11	N11	₹0.	H	N11	N11
91/6-14			다. 다. 표	.25	. 22	90•	.020	3 00 .	3.76	1.83	N11	N11	.055	H	N11	N11
इ.स.	.	.	, # 150 # 15	92•	. ZJ	90.	.020	200	3.78	1.78	N41	N11	90°	H	N11	N41

TABLE II

Results of Brinell Hardness Survey Conducted on 2½ Thick

Rolled Homogeneous Armor Plates

Plate No.	Surface Range	Hardness Average	Cross Section Range	Average
114	255	255	248_255	253
2 1 A	255-262	261	255-269	262
21B	262-269	263	255-262	25 8
210	255-262	260	255-262	25 8
21D	2 62- 26 9	267	26 2_26 9	263
31A	255-262	258	248-255	253
31B	2 55 – 262	257	248-262	255
41A	248-255	251	241-255	247
41B	248-255	251	248-255	251
41C	248-262	257	241-255	250
41D	248-255	253	241-255	249
51B	255-269	264	255-269	25 9

TABLE III

Results of Brinell Hardness Survey Conducted on 2½" Thick Rolled

Face Hardened Armor Plates

		\mathbf{r}_{e}	ce		Cros	s Secti	on of Core	·
Plate	Cent	er	Edge)	Cent		Edge	
No.	Range	Ave.	Range	Ave.	Range	Ave.	Renge	Avo.
41 1/16	601-627	607	65 3	653	223-229	226	207-229	212
41 1/8	6 01	601	555-601	570	217-223	220	217	217
41 3/16	601	6 01 -	555 - 5 78	563	223-229	225	217-223	218
41 1/4	627	627	53 ¹ 555	549	541-548	243 .	223-229	226
41 5/16	4 95-5 55	518	62 7- 6 5 3	6 11 1	229-235	231	217-229	223
41 3/8	-		534-601	563	-0-000-Q16		217	217
41 7/16	6 01	60 1	555-601	584	223-255	233	207-212	211
41 1/2	6 5 3	653	653	653	223-235	231	217-223	221
41 9/16	555-5 7 8	560	62 7-682	6 54	212-229	219	223-229	225
41 5/8	578	578	601-653	627	212-229	216	212 -217	215
41 11/16	11111-1177	465	627	627	241	241	212-217	215
41 3/4			601-627	618	-		212-223	228
41 13/16		******	682_712	690			212-223	216
41 7/8	514-534	522	653-712	682	229-235	233	207-212	208
41 15/16	601-627	617	627-653	944	212-255	230	207-223	211
441	ugaritan.		511-601	572		-	207-217	515

Summary of the Results of Tests Conducted on 22" Thick Rolled Homogeneous A

				• V_No ten Charn
Plate	Fra	cture Tests		According to the second
No.	Fibre	Iteel Quality	Ave. Cross Sectional EDM	Direction of Rolling Ft /Lbs.
11Ä	**F	В	253	Longitudinal 72.8 Transverse 57.7
21A	F	В	262	Longitudinal 71.3 Transverse 54.1
21B	F	C	258	
210	F	С	258	
21D	F	D	263	
31A	F	D	253	Longitudinal 74.7 Transverse 61.4
31B	F	С	255	
141A	F	D	247	
41B	F	В	251	
hlс	F	D	250	Longitudinal 80.6 Transverse 62.3
41D	Ŧ	ָ מ	249	Million Add All Annual
51B	F-Tr. o	f allinity C	259	

^{**}F -- Fibrous

2

^{*} All V-notch Charpy bars were cut from the midwall of the plates.
Midwall indicates a position halfway between the center and surface of the plate.

TABLE IV

; Conducted on 21" Thick Rolled Homogeneous Armor Plates

	+ V_Nc	ten Charn	y Impact Tes	te	
	The second secon	/ 7	'o''F	_1()^F
nal BIN	Direction of Rolling		Fracture	Pt./Iba.	Frecture
	Longitudinal &	7 2.8	F	71.3	r
	Transverse	57.7	F	55.0	F
	Longitudinal	71.3	F	69.8	P
	Transverse	54.1	F	51.9	F
		·	-		-
			-	****	-
			-		• .
	Longitudinal	74.7	F -Tr.woodi	ness 71.3	F
	Transverse	61.4	F	56.4	F
			-		-
			-		-
		~~	-		-
	Longitudinal	80.6	F-some wood	iness 71.3	F-some woodiness
	Transverse	62.3	F	5 9 .6	F
			-		-

of the plates, inter and surface of the plate.

१८०० <u>१०५५ सम्बद्धाः स्टब्स्ट</u>

2

and the control of the second of the control of the

	*Case	Depth			i	green of the second		· Desire in
	્ ધ	3	•	Iract	are Tests		Hardr	ess Survey
	Ra	Ro	• 181		Steel Qual		Maximum Ro Hardness	Average Ha
Sample No. 41 1/16	-74#	.10°	<u>Core</u> Fibrous	Sallky	B moderate woody	<u>Center</u>	of Case 54.5	<u>BBN</u> 226
41 1/8	.70*	.38*	Fibrous	Silky	B moderate	B	56.5	220
41 3/16	.58*	-36■	Pibrous	Silky	B moderate	В	55.0	225
41 1/4	.60.	36	Fib rous	Silky	B moderate woody	В	57•5	243
41 5/16	.58*	•09 *	Fibrous	Silky	B pronounced	i p	50.5	231
41 3/8	***	 .	*** ***		B brouomes	i _		-
41 7/16	.68 a	•30 *	Fibrous	Silky	B moderate	В	55•5	233
41 1/2	.80*	.26"	Fibrous	Silky	B moderate	В	56.5	231
41 9/16	•58#	.16"	Fibrous	Silky	c pronounced	d C	53 •5	219
41 5/8	.63*	.36*	Fibrous	Silky	B bronomose	i B	54•5	216
41 11/16	.80*	;	Pibrous	silley	B bronomosq	В	50.0	241
41 3/4					B bronomeed	i _		-
41 13/16	,	 ,		-	c pronounced	<u> </u>		-
41 7/8	.65*	.26*	Pibrous	Silky	Rooga B bronomes	i B	51.5	233
41 15/16	.64*	*10 a	Mbrous	Silky	c pronounced	i c	56.0	230
1111		****			B moderate	-	******	-

NOTE: V-notch Charpy bars were taken from midwall section of plates. Midwall in face harden

^{*}Samples taken from central areas of ballistic test plate.
**Samples taken from areas near edge of ballistic test plate.

		ha Amerika ng kanala sa katawa sa ka		4,		
				en e	, · · · · · · · · · · · · · · · · · · ·	
Y-Match C	+70°¥.	Direction of	ripess of Core	rdness Survey	Maximum Ro Hardne	<u> </u>
Fract	Ft/Lbs.	Rolling	Ro Converted	BHM	of Case	nter
			19 .	226	54-5	В
		. 4	18	220	56.5	B
		•	19	225	55.0	В
			23	243	57•5	B
		·	21	231	50.5	۵
			***	-		-
Fidz Fidz Fidz Fidz	10 6. 2 67. 5 103. 6 65. 6	*Longitudinal *Transverse **Longitudinal **Transverse	21.5	233	55•5	В
			21	231	56.5	В
Fibrous (bro Fibrous (bro of lami Fibrous (bro	131.3 46.6	*Transverse	17.5	219	53•5	Ç
of lami Fibrous (98 . 5 67.0	**Transverse		•	,	
			17.5	216	54.5	В
		•	23	241	50.0	В
						-
				-		-
			21.5	233	51.5	В
Fibrous (bro Fibrous (bro of lamin	127.0 74.2	**Iransverse	20.5	230	56.0	C
Pibrous (tr of	112.2	**Longitudinal **Transverse		-	******	-

ction of plates. Midwall in face hardened plate refers to a position halfway between the canter

test plate. In test plate.

		V-Motch Charpy J	Impact Tests	
irection of	+70*3.		-140°T.	
Rolling	Ft/Lbs.	Fracture	Pt Lbs.	Fracture

Longitudinal Fransverse Longitudinal Transverse	106.2 67.5 103.6 65.6	Fibrous Fibrous Fibrous	101.6 65.6 113.7 67.5	Fibrous Fibrous Fibrous (woody)
Longi tudical	131.3	Pibrous (woody)	90.3	Fibrous (woody)
iransver se	46.6	Fibrous (broken ends of laminations)	47.5	Fibrous (broken ends of laminations)
longi tudinal Iran sve rse	98.5 67.0	Fibrous (broken ends of laminations) Fibrous (woody)	98 . 5 67 . 5	Fibrous (broken ends of laminations) Fibrous (woody)

Longitudinal Lransverse	127.0 74.2	Fibrous (woody) Fibrous (broken ends of laminations)	99•5 65.6	Fibrous (woody) Fibrous (broken ends of laminations)
Longitudinal Transverse	112.2	Fibrous (tr of woodiness) Fibrous	112.2 77.6	Pibrous Fibrous

to a position halfway between the center and rear face.

Table I

TABLE VI

Tensile Tests

Test Bar . 357 Bismeter

Plate No.	Туре	Location of Test Specimen Direction		Y.S. Lbs./Sq.In.	E.S. Lbs./Sq.In.	
lla	Homogeneous	Midwall	Longitudinal	105,500	124,000	
lla	Homogeneous	Midwall	Transverse	106,500	125,500	
5] ए	Homogeneous	Midwall	Longitudinal	110,000	125,000	
चित्र	Homogeneous	Midwall	Transverse	109,500	130,500	
31A	Homogeneous	Midwall	Longi tudinal	107,500	125,500	
31n	Homogeneous	Midwall	Transverse	107,500	125,000	
#10	Homogeneous	Midwall	Longi tudinal	103,750	123,000	
#10		Midwall	Transverse	103,120	122,500	
41 7/16 41 7/16	Face Hardened	Midwall Midwall	*Longitudinal *Transverse	100,000 114,000	135,000 157,000	
41 7/16 41 7/16	Face Hardened Face Hardened	Midwall Midwall	**Longitudinal **Transverse	80,000 82,500	105,000	
41 9/16	Face Hardened	Midwall	*Longitudinal	93 ,5 00	131,500	
41 9/16		Midwall	*Transverse	87 ,5 00	125,000	
41 9/16 41 9/16	Face Hardened	Midwall Midwall	**Longitudinal **Transverse	80 ,00 0 84 ,5 00	107,900	
41 15/16	Face Hardened	Midwall	**Longitudinal **Transverse	77,500	102,000	
41 15/16	Face Hardened	Midwall		80,500	100,900	
ታታ፤ ታታ፤	Face Hardened	Midwall Midwall	**Longitudinal **Transverse	80,000 83,750	104,000	

The springs begin

NOTE: Midwall indicates a position halfway between the center and surface of the p Midwall in face hardened plate refers to a position halfway between the cent *Jamples taken from central areas of ballistic test plate.

[&]quot;" Sumples taken from areas near edge of ballistic test plate.

Table VI

Tensile Tests

Test Bar . 357* Diameter

ion of pacimen	Direction	Y.S. Lbs./Sq.In.	T.S. Lbs./Sq.In.	% E1.	, R.A.	Average Cross-Sectional BEN	
wall	Longitudinal Transverse	105,500 106,500	124,000 125,500	20.0	64.4 58.9	253	
wall	Longi tudinal Transverse	110,000 109,500	128,000 130,500	20.7 20.0	63.7 38.9	262	
ivall	Longi tudinal Transverse	107,500 107,500	125,500 125,000	20.7 20.0	62.0 59.6	258	
ivall pmll	Longi tudinal Trans v ors o	103,750 103,120	123,000 122, 5 00	21.4	63.7 58.9	250 Average Cross Section of Core - BHN	
					٠.	Near 44ge of Plate	Near Central Area of Plate
wall wall	*Longitudinal *Transverse	100,000 114,000	135,000 157,000	17.9 12.9	56.3 38.9		233
iwall iwall	**Longitudinal **Transverse	80,000 82,500	105,000 106,000	26.4 25.0	71.6 66.0	211	
bmll bwall	*Longitudinal *Transverse	93 ,5 00 87 ,5 00	131,500 125,000	17.9 18.6	55•9 53•3		219
ivall	**Longitudinal **Transverse	80,000 84,500	107,900 108,800	25.0 23.6	70.7 61.3	225	
iwall iwall	**Longitudinal **Transverse	77 .5 00 80 ,5 00	102,000 100,900	25.0 23.6	72 .5 59 . 9	211	
iwall	**Longitudinal **Transverse	80,000 83,750	104,000 106,000	26.4 25.0		32	

tion helfway between the center and surface of the plate.
Late refers to a position halfway between the center and rear face.

2

l areas of ballistic test plate.

2 ½ FACE HARDENED ARMOR

MADE BY CARNEGIE-ILLINOIS STEEL CORPORATION

ROCKWELL "C" HARDNESS SURVEYS ACROSS THE CARBURIZED CASE

2 1 FACE HARDENED ARMOR

MADE BY CARNEGIE-ILLINOIS STEEL CORPORATION

ROCKWELL "C" HARDNESS SURVEYS ACROSS THE CARBURIZED CASE

Microstructure of $2\frac{1}{2}^{n}$ Thick Rolled Homogeneous Armor Plates

Cempered martensite.

X1000 31. Tempered martensite.

tempered bainite).

martenattic matrix .035#

In the core (dark areas similar to